

EDRIVE - MEC

EPSRC Supergen Marine Grand Challenge 1st April 2016 – 31st March 2019

4.2 Electrical Generator Concepts and Design

Nick Baker

Department of Electrical and Electronic Engineering at Newcastle University, Newcastle Upon Tyne, NE1 7RU, U.K.

(email: nick.baler@ncl.ac.uk)

Overview

- Electrical machine options
- Summary of design process
- Prototype design

Linear generator development

- High force or Torque Density
- Tend to use permanent magnet machines

Linear generator development

- Capital cost driven by magnet mass
- Use topologies with efficient magnetic circuit
- topologies being designed
 - Consequent pole
 - Vernier hybrid machine (VHM)
 - Transverse flux (TFM)
 - Flux switching (FSM)

Design task

parameter	Value	Unit	comment	
Number of modules	10		10 identical 3 phase units to make one single module	
Average real power output	25	kW		
Rated force	44	kN	Average force over electrical cycle	
Overload force	81	kN	Average force over electrical cycle	
Amplitude of oscillation	1.375	M	(i.e.2.75m peak to peak)	
V _{phase} output	240	V_{rms}	Limit of DC voltage	
Current density	3.5	A/mm ²	RMS over full mechanical cycle	
	7	A/mm ²	Peak value at peak of rated power	
	12	A/mm ²	RMS at overload condition	
	17	A/mm ²	Peak value at peak overload power	

Benchmark machine

Maximise performance

Initial results

Parameters	C-core VHM	E-core VHM	Improved E- core LVHPM
Magnet thickness (mm)	4	4	2.1
Force (kN)	4.9	4.8	5.6
Cogging (kN)	0.6	0.5	0.2
Back EMF / turns (V)	0.98	1.1	1.3
Magnet mass (Kg)	2.55	2.55	1.34
Stator mass (Kg)	83	83	68
Translator mass (Kg)	44	44	13

Consequent pole: *Minimise magnet material*

Consequent pole: *Minimise magnet material*

Institute for Energy Systems

	2.5 kW (single module tested in lad)	25 kW full machine
Force	4.4 kN	44 kN
Force ripple	4%	8%
Cogging torque pk-pk	86 N	172 N
V phase	240 Vrms Limit of DC voltage	

	2.5 kW (planned prototype)	25 kW (full machine)	
Active length (m)	0.6	3.2	
Axial length (m)	0.08	0.2	
Machine height (m)	0.2	0.2	
Magnet mass (kg)	1.05	10.5	
# turns/ coil	41		
Magnet width (mm)	12		
Magnet thickness (mm)	4		
Stator mass (kg)	42.3	423	
Coil mass (kg)	13	130	
Active mover mass (kg)	8.75	80.8	

Power Factor = 0.2

Power factor v mag mass

		AG=1_mag=8mm	AG=2_mag=8mm	AG=1_mag=4mm	AG=2_mag=4mm
	Lx=75mm	0.3	0.17	0.21	0.09
PF	Lx=110mm	0.6	0.37		
rr	Lx=150mm	0.7	0.35	0.52	0.17
	Lx=225mm				0.26

2.5KW prototype models Module			Novel#1
Numbe	r of magnets	72	108
	magnets	1.02	2.59
Kg	copper	13.6	12.4
!	total	41.5	45.3
N	Cogging	182.6	114.5
V	Back EMF	40.4	70
NI	Force	4435	4400
IN	Force Ripple	310	376
V	Terminal Voltage	255	185
	Power factor	0.23	0.39
1	Module Numbe Kg	Module Number of magnets Kg copper total N Cogging V Back EMF N Force Force Ripple V Terminal Voltage	Module Number of magnets 72 Kg magnets 1.02 Kg copper 13.6 total 41.5 N Cogging 182.6 V Back EMF 40.4 Force 4435 Force Ripple 310 V Terminal Voltage 255

Newcastle University

Machines summary

- Slow speed machines tend to imply permanent magnet topologies
- Good magnetic circuit implies poor power factor
- Balance between VA rating and magnet mass
- Have designed for 2.5kW and 25kW
- Have preliminary designs for laboratory prototypes

